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Introduction
To understand battery systems, simulation tools 
are often employed. For a high level of accu-
racy and reliability, these tools need accurate 
values of relevant physico-chemical parameters 
of the materials being involved. In case of binary 
electrolyte solutions, at least four different con-
centration and temperature-dependent trans-
port parameters are required: the conductivity 
σ(T,c), the binary diffusion coefficient D±(T,c), 
the transference number t+(T,c), and the ther-
modynamic factor f±(T,c).
In this application note, we demonstrate how to 
determine the lithium ion transference number 
of a commercial liquid binary lithium ion battery 
electrolyte based on the very elegant and one-
step very-low-frequency impedance spectroscopy 
(VLF-EIS) method elaborated by Wohde, Bala-
bajew, and Roling [1]. 

Experimental 
a) Chemicals
As liquid binary lithium ion battery electrolyte, 
1  mol/L LiPF6 (lithium hexafluorophosphate) 
solution in EC (ethylene carbonate) : DMC (di-
methyl carbonate) 1:1 (v:v) was purchased from 
Sigma-Aldrich Chemie GmbH and was used 
without any further purification. Metallic lithium 
foil from Rockwood Lithium GmbH (now part of 
Albemarle Corp.) in high purity was used for pre-
paring the counter and working electrode. A po-
rous polyethylene film (PE, Nitto Denko Corp., 
Sunmap® LC) with a thickness of  500 µm and 
30% porosity was used as separator. All chemi-
cals have been stored and handled inside of an 
argon filled glove box (M. Braun Inertgas-Sys-
teme GmbH).

b) Sample preparation & measuring setup
For electrochemical measurements, a TSC bat-
tery advanced measuring cell in combination 
with a Microcell HC setup (rhd instruments 
GmbH & Co. KG) was used. The design of the 
measuring cell is shown as schematic drawing in 
Figure 1. 
As working and counter electrode, metallic lith-
ium was used. The active electrode area was 
1.13 cm2. The PE separator soaked with elec-

trolyte solution was placed between the lithium 
electrodes to reduce influences by convection. 
To ensure good wettability, the separator was 
stored in the electrolyte solution for 48 h before 
assembling the measuring cell.
The sample temperature was conrolled by the 
Microcell HC Setup using Peltier technique. The 
temperature accuracy of this setup is 0.1 °C 
with regard to the sensor position in the measur-
ing cell base unit. For the experiments present-
ed here, the temperature was varied between 
-10 °C and +50 °C.

Figure 1:  Schematic drawing of the TSC battery 
advanced measuring cell. As working and counter 
electrode, metallic lithium was used. A porous poly-
ethylene separator soaked with 1 mol/L LiPF6 solu-
tion in EC:DMC 1:1 (v:v) was placed between the 
electrodes. 

A PGStat204 potentiostat/galvanostat  equipped 
with a FRA32-module (Metrohm Autolab B.V.) 
was used for EIS experiments. For data acquisi-
tion, the NOVA 2.1.4 software was used. The 
control of the Microcell HC temperature unit is 
integrated in NOVA.
Impedance data was evaluated by means of 
the RelaxIS 3® software suite (rhd instruments 
GmbH & Co. KG).

c) Measurement parameters
In a first step, consecutive EIS measurements 
with an AC voltage amplitude of 1 mV (rms) 
were performed in the frequency range from 
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100 kHz to 1 Hz to make sure that the system 
and especially the lithium-electrolyte interface is 
stable which could take up to more than 72 h. 
For the VLF-EIS experiments, impedance spec-
tra for frequencies ranging from 100 kHz down 
to 1  mHz (10 frequencies per decade) were 
measured with an ac voltage amplitude of 1 mV 
(rms). To ensure  that the system is thermally 
equilibrated, a hold time of 900 s was chosen 
after reaching the temperature set-point before 
starting the VLF-EIS measurement.

Experimental 
step no.

Action to be performed

1

Setting temperature to 
20 °C, applying 900 s hold 
time for temperature equili-
bration

2

Performing consecutive 
EIS measurements with 
VAC(rms) = 1 mV and 
f = 100 kHz ... 1 Hz (10 
frequencies per decade) until 
EIS response is stable

3

Carring out VLF-EIS analysis 
with VAC(rms) = 1 mV and 
f = 100 kHz ... 1 mHz (10 
frequencies per decade)

4

Setting temperature to 
30 °C, applying 900 s hold 
time for temperature equili-
bration

5

Performing VLF-EIS analysis 
with VAC(rms) = 1 mV and 
f = 100 kHz ... 1 mHz (10 
frequencies per decade)

6 Repeating steps 4 + 5 for 
next temperatures

Results
The resulting VLF-EIS spectra can be described 
with the equivalent circuit proposed by Wohde 
and Roling [1].
The impedance response at high frequencies is 
dominated by the movement of ions through the 
electrolyte-soaked separator network and further 
serial resistance contributions like contact resist-
ances, which is represented by the Ohmic resistor 
Rbulk.

At intermediate frequencies, the impedance re-
sponse is governed by the contributions of the 
solid electrolyte interface (SEI) between lithium 
and the electrolyte solution and the charge-
transfer at the lithium electrode (CT). However, 
in contrast to Wohde and Roling [1], we merged 
the two R-CPE elements representing the SEI 
and the CT contributions to a combined Rinterface-
CPEinterface element, see figure 2. Since the time 
constants for the SEI and the CT related pro-
cesses were too similar, it was impossible to sep-
arate them in the equivalent circuit fit.
The diffusion impedance dominates the low fre-
quency behavior. It is caused by the formation of 
a diffusion layer across the bulk of the electrolye 
solution and it is described by a Warburg short 
element Ws. Here Rdiffusion denotes the diffusion 
resistance, and τ the characteristic time for es-
tablishing the stationary diffusion profile across 
the electrolyte [1]:

Figure 2:  Impedance spectrum measured at 20 °C for 
frequencies ranging from 100 kHz to 1 mHz using an 
AC voltage amplitude of 1 mV (rms). 

In figure 3, the VLF-EIS spectra measured at 
10 °C, 20 °C, 30 °C and 40 °C are shown to-
gether in one plot. As expected, an increase of 
the sample temperature leads to significantly de-
creasing values for the bulk ion transport resist-
ance Rbulk, the interfacial resistance Rinterface, and 
the diffusion impedance Ws (Rdiffusion).
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Figure 3: Impedance spectra measured at 10 °C, 
20 °C, 30 °C, and 40 °C for frequencies ranging from 
100 kHz to 1 mHz using an AC voltage amplitude of 
1 mV (rms).

The parameter values resulting from the fit are 
given in the following table.

T / °C Rbulk /Ω Rinterface/Ω Rdiffusion/Ω τ /s α

-10 147 11551 1569 189 0.42
0 113 4823 934 155 0.41

+10 89 2053 615 142 0.40
+20 79 890 356 99 0.39
+30 69 397 187 66 0.37
+40 60 185 92 26 0.36
+50 50 84 52 14 0.33

From Rbulk and Rdiffusion, the lithium ion transfer-
ence number can be calculated:

The resulting transference numbers are plotted 
as a function of temperature in figure 4.
The lithium ion transference numbers deter-
mined here are comparable to those determined 
by Landesfeind and Gasteiger [2] and Hou and 
Monroe [3]. Interestingly, the lithium ion trans-
ference number is relatively low for temperatures 
lower than room temperature and increases sign-
ficantly for higher temperatures. However, the 
goal of our application note is to show how to 
perform the experiment. To verify the results 
presented here, the experiment should be re-
peated several times by different experimenters.

Figure 4:  lithium ion transference numbers as a func-
tion of sample temperature.

T/°C Lithium-ion transference 
number

-10 0.09
0 0.11

+10 0.13
+20 0.18
+30 0.27
+40 0.39
+50 0.49

Summary 
In this application note, we showed how to de-
termine the temperature-dependent lithium ion 
transference number of a commercial binary lith-
ium ion battery electrolyte by applying the el-
egant VLF-EIS method proposed by Wohde and 
Roling [1]. The resulting values are close to the 
values determined for similar electrolyte systems 
using alternative approaches [2,3]. 
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