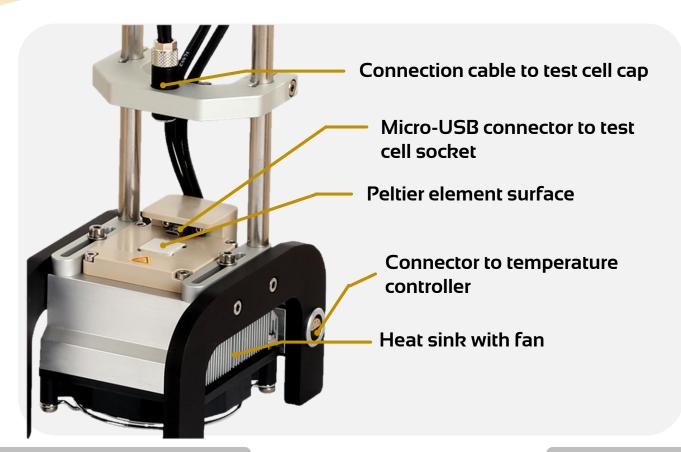
Microcell HC Basic Setup

Suggested Accessories

Electrochemistry served hot and cold


The Microcell HC basic setup has been designed to **adjust the sample** temperature when working with test cells from rhd instruments. Based on Peltier element technique, the accessible sample temperature range is -40 °C to +100 °C. The temperature is measured with an high accuracy of 0.1 °C bv of Pt100 means which temperature sensors are embedded in each test cell socket. Due to optimized control parameters and a very fast response to new temperature set points, temperature overshoots can be avoided.

Typical Applications:

- Determination of the temperaturedependent electrolyte conductivity.
- Investigation of the temperaturedependent structure and dynamics of buried interfaces.
- Investigation of the temperaturedependent behavior of electrochemical system in general.

Microcell HC Basic Setup

Technical Specifications

Compatible test cells:	 TSC 70/1600 Closed TSC Sw Closed TSC Battery TSC Surface TSC Spectro
Adjustable temperature range:	-40 °C* ↔ +100 °C *accessible in combination with rhd Cooling Box
Communication protocol (temperature controller)	RS232 or analog I/O* *requires MultiSourceBox
Mains voltage (temperature controller)	U _{AC(rms)} = 100 to 240 V
Optional accessories:	 rhd Cooling Box (for lower temperatures) MultiSourceBox

[1] J. Atik et al., 'Acyclic Acetals in Propylene Carbonate-

References

Based Electrolytes for Advanced and Safer Graphite-Based Lithium Ion Batteries', J. Electrochem. Soc. (2020) 167, 4, 040509.

https://doi.org/10.1149/1945-7111/ab72dc

[2] A. Hatz et al., 'Faster Water-Assisted Lithium Ion Conduction in Restacked Lithium Tin Sulfide Nanosheets', Chem. Mater. (2021) 33, 18, 7337. https://doi.org/10.1021/acs.chemmater.1c01755

[3] M. Ochs et al., 'Influence of Wettability on the Impedance of Ion Transport Through Mesoporous Silica Films', Advanced Materials Interfaces (2021) 8, 9, 2002095. https://doi.org/10.1002/admi.202002095

[4] D.-L. Versace et al., 'Highly Virulent Bactericidal Effects of Curcumin-Based μ -Cages Fabricated by Two-Photon Polymerization', ACS Appl. Mater. Interfaces **(2020)**, 12, 5050.

https://dx.doi.org/10.1021/acsami.9b18693

www.rhd-instruments.de

info@rhd-instruments.de